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J. Phys.: Condens. Matter l(1989) 6901-6905. Printedin the UK 

LETTER TO THE EDITOR 

The temperature dependence of inelastic rotational 
tunnelling transitions 

Alois Wurger 
Institut Laue-Langevin, Avenue des Martyrs, 156X-38042 Grenoble CCdex, France 

Received 17 July 1989 

Abstract. The temperature dependence of position and width of inelastic rotational tun- 
nelling transitions is investigated. Special emphasis is put on the functional dependence on 
the ratio of splitting and resonance width of the excited librational multiplets, and an upper 
bound for the prefactor of the linewidth is derived. 

In the absence of magnetic interactions, a methyl or amine group in a crystal environment 
is described by the Hamiltonian 

H =  Hs + HB + HSB 

HB = 2 Wk(bk+ bk + 4) 
Hs = - a 2 / a q 2  + V C O S ( ~ C ~ )  

HsB = 
(1) g cOs(3q + 8 , )  (b:  -k bk) 

k k 

the potential energy of which contains the lowest order terms of the Fourier and power 
series in the collective proton angle, q ,  and the oscillator coordinates of the heat bath, 
respectively (Hewson 1982, Wiirger 1989). The eigenstates of the system Hamiltonian 
H s  are labelled by a librational quantum number, m, and a symmetry index, a, the latter 
characterising the behaviour under proton exchange of the spin and space part of the 
wavefunction (Press 1981). 

In a previous paper (Wurger 1989, hereafter referred to as 1-40 link up with the 
notation used there, put g i  = g cos 8k and gs( = g sin 8 , )  we considered the librational 
excitations (Oa+ lo’) and the tunnelling spectrum, i.e. the elastic (Oo+ Oa), the quasi- 
elastic (OE”+ OEb) and the inelastic transitions (OA-, OE). The width of the quasi- 
elastic transitions came out to be much smaller than the resonance width. For the 
inelastic lines, we restricted ourselves to the case where the range of phonons resonating 
with the librations of the symmetries A and E do not overlap. 

The resonance width of the levels of the ground state multiplet is given by the 
expression 

which is well known from perturbation theory. As in I, Mom denotes the coupling matrix 
element, Em the average energy of the mth multiplet and D ( o )  the density of states of 
the heat bath. The principal contribution to the resonance width of the levels of the mth 
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Figure 1. Level scheme showing the resonance 
widths for the two lowest multiplets. It does not 
represent the spectrum of the Hamiltonian ( l) ,  
but illustrates rather the effects of the bath on the 
levels of H,. 

multiplet (m > 0) reads n/M,,/*D(E,) = yom/2;  since the temperature-dependent terms 
are unimportant in the tunnelling regime, i.e. for T < E l ,  they have for simplicity been 
discarded. 

In this Letter we extend our previous treatment of the inelastic transitions to the case 
where the phonons resonating with the A and E librations are no longer distinct, as 
illustrated in figure 1. 

The calculation has been done within the framework of the Nakajima-Zwanzig 
theory (I, Haake 1973): after expanding the Liouville operator to the second order in 
the interaction, the time evolution operator is given by 

d z  K ( t )  V(t - z) ( 3 )  r,: a 
at 

i-  V(t)  = L,  V(t)  + 
where use has been made of the definitions 
Ls . = EHs, .] 

K( t )  . = TrB{HsB, exp[-i(Hs + HB)t] [HSBr .  exp(-/3HB)] exp[i(Hs + HB)t]}. 
The Fourier transform of ( 3 )  yields the scattering function which we want to calculate 

(4) 

S ( 2 )  = (xv (2 )x )  = ( X [ l / ( Z  - L, - K(2))J  x). ( 5 )  

The neutron scattering operator, X ,  causes spin flips between the A-symmetric ( I  = 2) 
and E-symmetric ( I  = i) states of the three protons of a methyl group: hence (5) may be 
interpreted as a spin susceptibility. 

The energies and widths of the tunnelling transitions are given by the lowest eigen- 
value of the Liouvillian. As described in I, the operators Ls and K are represented by 
tetrads with respect to the eigenbasis of H,. After expanding the determinant of the 
denominator of (5) in inverse powers of the higher diagonal elements, we obtain as the 
leading term for the linewidth 

The splitting of the mth multiplet is denoted by Am. Since the ratio Ao/Am is small for 
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m > 0, the ground state splitting has been omitted everywhere. There are two limits for 
the prefactor appearing in (6): 

Yom + I A m l :  r m  = Yom (7a) 

Yom 9 I A m I :  r m  = A i / Y o m .  (7b) 

The result for large A,, (7a), is equivalent to formula (3.14) of I. In the other limiting 
case, (7b) ,  the contribution of the mth multiplet to the linewidth is given by twice the 
fraction (A,/yo,)* of the corresponding contribution to the resonance width (2). In 
addition, (6) provides as an upper bound for the prefactor 

r m  l A m l / 2 *  

Now we turn to the position of the A-E-tunnelling line, 0. With the definition 

and t, being the same, but with the signs in the denominators interchanged, the energy 
transfer reads 

Again, for yo, + IAml the second term in the bracketsisnegligible and we recover formula 
(3.12) of I. For the inverse case, yom S IA,l, the two contributions in (10) are of the same 
order of magnitude; with rising temperature the second term overtakes the first one. 

At the origin of the above expressions is the decomposition of singular integrands of 
the type 

lim [1/(E - U t iq)] = P[l/(E - U)] 3 i n  6 ( E  - U )  
7-0 

as they appear in formulae (3.10) of I. The Cauchy principal value accounts for the non- 
resonant, mainly acoustic, phonons and leads to the first term in brackets in (lo), whereas 
the delta-function part describes the effects of resonant modes, U = E ,  which are the 
linewidth and the second contribution to the temperature-dependent lineshift. 

Imagine we had diagonalised the Hamiltonian (1) and written its eigenstates in the 
standard basis as 

As above, m = 0,1,  . , . denotes the librational levels of the molecule and {nk} gives the 
phonon occupancy: since the phonons mix librational states of the same symmetry, the 
symmetry label o is the only ‘good’ quantum number. In the tunnelling regime the 
temperature is well below librational energies, thus the accessible states of type (12) are 
made up mainly of terms with m = 0. 

First let us look at the quasi-elastic scattering. Ea- and Eb-symmetric states form time- 
reversed pairs: the relevant part of the scattering operator correspond approximately to 
time reversal, and the transitions are almost elastic. (Actually, the width calculated in I 
is proportional to the square of the amplitude which the scattering operator does not 
map on the time-reversed state.) 
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Now we turn to the inelastic case, where initial and final states differ-due to the 
multiplet splitting-in the absolute value of the expansion coefficients in (12); as a 
consequence, an A-symmetric state can be scattered in many E-symmetric ones with a 
certain distribution of energy. Because of the complicated level structure of H,, there is 
no exact solution: in the present work the linewidth (6) characterising the final energy 
distribution about the average energy transfer (10) has been calculated by expanding 
the Liouville operator-not the Hamiltonian-in a power series. In this perturbative 
approach the broadening and the crossover between the limiting cases (7) is traced back 
to the destruction of coherent scattering of the probability amplitude in higher multiplets 
with increasing splitting. 

The functional form of the prefactors in (6) fulfils the condition imposed by requiring 
the width to be an analytic function; as it cannot depend on the sign of the splitting, Tm 
must be an even function of A,,,. 

We have distinguished between the transition width (6) and the resonance widths 
(2) of initial and final states. In the limit (7a) the former is given by the sum of the latter; 
this result can also be obtained in the frame of time-dependent perturbation theory. 
Recently, the prefactor for the other limiting case (7b) has been derived using a different 
approach, by mapping the problem on an exactly soluble model consisting of a lattice of 
coupled harmonic oscillators (Huller 1989). 

The most striking feature seems to us to be the upper bound for the prefactors, 
because it relates the quantities describing the temperature dependence to the multiplet 
splittings, which are determining by the tunnelling energy at zero temperature. A,,, being 
exponentially small in the potential, (8) provides quite a strong condition. Furthermore, 
the resonance width yO1/2 is given by the width of the librational excitations at zero 
temperature. (In passing we note that the factor of 2 in the first term to rllb in (3.22) of 
I is wrong; it should be omitted.) 

The two contributions to the line shift in (10) are due to acoustic phonons and to 
those in resonance with the molecular libration; because of the many degrees of freedom 
connected with the latter type of motion in molecular crystals, one might expect the 
‘phonon’ density of states to exhibit a strong peak at librational energies. Then the 
second term in the brackets in (10) would lead to an Arrhenius type of law for the line 
shift; for lAll = yol the prefactor equals that for the broadening. 

Thereissome experimental support for theinequality (8) holding: evidently, the most 
interesting systems are those with a high potential that give small multiplet splittings. It 
is sound to focus on the first triplet, because due to the Bose occupation factors the m = 
1 term dominates in the tunnelling regime. For NH,-CO-CH, (Heidemann et a1 1989), 
CH31 (Prager et a1 1987) and C6H5-CH3 (Cavagnat et a1 1986) the values for the ratio 
rl/lAl1 lie between 0.5 and 0.8. Given the uncertainty of, typically, 50%, these are still 
compatible with the theoretical upper bound of t .  There are experimental data available 
for compounds with a still higher potential of about 25 meV, resulting in A. = 1 peV 
and A I  = 40 peV; for MNAC (Heidemann et a1 1987) no broadening could be detected, 
whereas for 2,4-hexadiyne (Cockbain et a1 1982) it would seem to be due entirely to the 
second multiplet. These findings are explained by our formulae (6) and (8) as the 
suppression of the m = 1 contribution to the broadening below the experimental reso- 
lution. 

In the framework of a previously developed approach to the temperature dependence 
of rotational tunnelling we have found the position and width of the inelastic lines to 
depend in an unexpected fashion on the ratio of multiplet splitting and resonance width; 
for the limits of that ratio being both small and large, our result is in accordance with 
both an oscillator model put forward recently and perturbation theory, respectively. 
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We have derived an upper bound for the linewidth that is independent of the 
quantities describing the bath. Further experimental work on this matter seems par- 
ticularly desirable. 

The author has benefitted greatly from discussions with Alfred Huller. 
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